Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
J Exp Clin Cancer Res ; 43(1): 92, 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38532439

BACKGROUND: Based on the established role of cancer-stroma cross-talk in tumor growth, progression and chemoresistance, targeting interactions between tumor cells and their stroma provides new therapeutic approaches. Dual-targeted nanotherapeutics selectively acting on both tumor and stromal cells may overcome the limits of tumor cell-targeting single-ligand nanomedicine due to the complexity of the tumor microenvironment. METHODS: Gold-core/silica-shell nanoparticles embedding a water-soluble iridium(III) complex as photosensitizer and luminescent probe (Iren-AuSiO2_COOH) were efficiently decorated with amino-terminated EGFR (CL4) and PDGFRß (Gint4.T) aptamers (Iren-AuSiO2_Aptamer). The targeting specificity, and the synergistic photodynamic and photothermal effects of either single- and dual-aptamer-decorated nanoparticles have been assessed by confocal microscopy and cell viability assays, respectively, on different human cell types including mesenchymal subtype triple-negative breast cancer (MES-TNBC) MDA-MB-231 and BT-549 cell lines (both EGFR and PDGFRß positive), luminal/HER2-positive breast cancer BT-474 and epidermoid carcinoma A431 cells (only EGFR positive) and adipose-derived mesenchymal stromal/stem cells (MSCs) (only PDGFRß positive). Cells lacking expression of both receptors were used as negative controls. To take into account the tumor-stroma interplay, fluorescence imaging and cytotoxicity were evaluated in preclinical three-dimensional (3D) stroma-rich breast cancer models. RESULTS: We show efficient capability of Iren-AuSiO2_Aptamer nanoplatforms to selectively enter into target cells, and kill them, through EGFR and/or PDGFRß recognition. Importantly, by targeting EGFR+ tumor/PDGFRß+ stromal cells in the entire tumor bulk, the dual-aptamer-engineered nanoparticles resulted more effective than unconjugated or single-aptamer-conjugated nanoparticles in either 3D spheroids cocultures of tumor cells and MSCs, and in breast cancer organoids derived from pathologically and molecularly well-characterized tumors. CONCLUSIONS: Our study proposes smart, novel and safe multifunctional nanoplatforms simultaneously addressing cancer-stroma within the tumor microenvironment, which are: (i) actively delivered to the targeted cells through highly specific aptamers; (ii) localized by means of their luminescence, and (iii) activated via minimally invasive light, launching efficient tumor death, thus providing innovative precision therapeutics. Given the unique features, the proposed dual targeted nanoformulations may open a new door to precision cancer treatment.


Aptamers, Nucleotide , Nanoparticles , Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Stromal Cells/metabolism , Triple Negative Breast Neoplasms/metabolism , Phototherapy , ErbB Receptors/metabolism , Organoids/metabolism , Tumor Microenvironment
2.
Dalton Trans ; 53(6): 2602-2618, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38223973

Many efforts have been made in the last few decades to selectively transport antitumor agents to their potential target sites with the aim to improve efficacy and selectivity. Indeed, this aspect could greatly improve the beneficial effects of a specific anticancer agent especially in the case of orphan tumors like the triple negative breast cancer. A possible strategy relies on utilizing a protective leaving group like alizarin as the Pt(II) ligand to reduce the deactivation processes of the pharmacophore enacted by Pt resistant cancer cells. In this study a new series of neutral mixed-ligand Pt(II) complexes bearing alizarin and a variety of diamine ligands were synthesized and spectroscopically characterized by FT-IR, NMR and UV-Vis analyses. Three Pt(II) compounds, i.e., 2b, 6b and 7b, emerging as different both in terms of structural properties and cytotoxic effects (not effective, 10.49 ± 1.21 µM and 24.5 ± 1.5 µM, respectively), were chosen for a deeper investigation of the ability of alizarin to work as a selective carrier. The study comprises the in vitro cytotoxicity evaluation against triple negative breast cancer cell lines and ESI-MS interaction studies relative to the reaction of the selected Pt(II) complexes with model proteins and DNA fragments, mimicking potential biological targets. The results allow us to suggest the use of complex 6b as a prospective anticancer agent worthy of further investigations.


Anthraquinones , Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Antineoplastic Agents/chemistry , Cell Line, Tumor , DNA/chemistry , Ligands , Prospective Studies , Spectroscopy, Fourier Transform Infrared , Female
3.
Biomolecules ; 13(10)2023 10 07.
Article En | MEDLINE | ID: mdl-37892171

While metal-based complexes are deeply investigated as anticancer chemotherapeutic drugs, fewer studies are devoted to their anti-invasive activity. Herein, two copper (Cu)(II) tropolone derivatives, [Cu(Trop)Cl] and [Cu(Trop)Sac], both containing the N,N-chelated 4,4'-bishydroxymethyl-2,2'-bipyridne ligand, were evaluated for their anticancer and anti-invasive properties. RKO (RKO-ctr) colon cancer cells and their derivatives undergoing stable small interference (si) RNA for HIPK2 protein (RKO-siHIPK2) with acquisition of pro-invasive capacity were used. The results demonstrate that while [Cu(Trop)Sac] did not show cytotoxic activity, [Cu(Trop)Cl] induced cell death in both RKO-ctr and RKO-siHIPK2 cells, indicating that structural changes on substituting the coordinated chloride ligand with saccharine (Sac) could be a key factor in suppressing mechanisms of cellular death. On the other hand, both [Cu(Trop)Sac] and [Cu(Trop)Cl] complexes counteracted RKO-siHIPK2 cell migration in the wound healing assay. The synergic effect exerted by the concomitant presence of both tropolone and saccharin ligands in [Cu(Trop)Sac] was also supported by its significant inhibition of RKO-siHIPK2 cell migration compared to the free Sac ligand. These data suggest that the two Cu(II) tropolone derivatives are also interesting candidates to be further tested in in vivo models as an anti-invasive tumor strategy.


Antineoplastic Agents , Coordination Complexes , Copper/pharmacology , Copper/chemistry , Ligands , Tropolone , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemistry
4.
ACS Nano ; 16(10): 16539-16548, 2022 Oct 25.
Article En | MEDLINE | ID: mdl-36215293

Metasurfaces have been extensively engineered to produce a wide range of optical phenomena, allowing exceptional control over the propagation of light. However, they are generally designed as single-purpose devices without a modifiable postfabrication optical response, which can be a limitation to real-world applications. In this work, we report a nanostructured planar-fused silica metalens permeated with a nematic liquid crystal (NLC) and gold nanoparticle solution. The physical properties of embedded NLCs can be manipulated with the application of external stimuli, enabling reconfigurable optical metasurfaces. We report the all-optical, dynamic control of the metalens optical response resulting from thermoplasmonic-induced changes of the NLC solution associated with the nematic-isotropic phase transition. A continuous and reversible tuning of the metalens focal length is experimentally demonstrated, with a variation of 80 µm (0.16% of the 5 cm nominal focal length) along the optical axis. This is achieved without direct mechanical or electrical manipulation of the device. The reconfigurable properties are compared with corroborating numerical simulations of the focal length shift and exhibit close correspondence.

5.
Front Chem ; 10: 884059, 2022.
Article En | MEDLINE | ID: mdl-35711963

The improvement of the antioxidant and antimicrobial activities of chitosan (CS) films can be realized by incorporating transition metal complexes as active components. In this context, bioactive films were prepared by embedding a newly synthesized acylpyrazolonate Zn(II) complex, [Zn(QPhtBu)2(MeOH)2], into the eco-friendly biopolymer CS matrix. Homogeneous, amorphous, flexible, and transparent CS@Znn films were obtained through the solvent casting method in dilute acidic solution, using different weight ratios of the Zn(II) complex to CS and characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), Raman, and scanning electron microscopy (SEM) techniques. The X-ray single-crystal analysis of [Zn(QPhtBu)2(MeOH)2] and the evaluation of its intermolecular interactions with a protonated glucosamine fragment through hydrogen bond propensity (HBP) calculations are reported. The effects of the different contents of the [Zn(QPhtBu)2(MeOH)2] complex on the CS biological proprieties have been evaluated, proving that the new CS@Znn films show an improved antioxidant activity, tested according to the DPPH method, with respect to pure CS, related to the concentration of the incorporated Zn(II) complex. Finally, the CS@Znn films were tried out as antimicrobial agents, showing an increase in antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus) with respect to pure CS, when detected by the agar disk-diffusion method.

6.
Inorg Chem ; 61(18): 7188-7200, 2022 May 09.
Article En | MEDLINE | ID: mdl-35467854

Platinum compounds cytotoxicity is strictly related to their ability to be converted into active mono- and di-aquated species and consequently to the replacement of labile ligands by water molecules. This activation process makes the platinum center prone to nucleophilic substitution by DNA purines. In the present work, quantum mechanical density functional theory (DFT) computations and experimental investigations were carried out in order to shed light on the relationship between the internalization, aquation, and DNA binding of two isostructural anionic theranostic complexes previously reported by our group, NBu4[(PhPy)Pt(Aliz)], 1 (IC50 1.9 ± 1.6 µM), and NBu4[(PhPy)Pt(BrCat)], 2 (IC50 52.8 ± 3.9 µM). Cisplatin and a neutral compound [(NH3)2Pt(Aliz)], 3, were also taken as reference compounds. The computed energy barriers and the endergonicity of the hydrolysis reactions showed that the aquation rates are comparable for 1 and 2, with a slightly higher reactivity of 1. The second hydrolysis process was proved to be the rate-determining step for both 1 and 2, unlike for compound 3. The nucleophilic attack by the N7 site of guanine to both mono- and di-aquated forms of the complexes was computationally investigated as well, allowing to rationalize the observed different cytotoxicity. Computational results were supported by photostability data and biological assays, demonstrating DNA as the main target for compound 1.


Antineoplastic Agents , Anthraquinones , Antineoplastic Agents/chemistry , Cisplatin/chemistry , DNA , Precision Medicine
7.
Bioconjug Chem ; 33(6): 1057-1068, 2022 06 15.
Article En | MEDLINE | ID: mdl-33677967

Sonodynamic therapy (SDT) is a novel promising approach for the minimally invasive treatment of cancer derived from photodynamic therapy (PDT). In this study, we have explored an effective sonosensitizer for SDT by loading the iridium(III) complex [Ir(ppy)2(en)] OOCCH3, where ppy = 2-phenylpyridine and en = ethylenediamine], from now on referred to as Ir, with high photosensitizing ability, into echogenic nanobubbles (Ir-NBs). Akin to photosensitizers, sonosensitizers are acoustically activated by deep-tissue-penetrating low-frequency ultrasound (US) resulting in a localized therapeutic effect attributed to an excessive generation of reactive oxygen species (ROS). The Ir-NB formulation was optimized, and the in vitro characterizations were carried out, including physical properties, acoustic performance, intracellular ROS generation, and cytotoxicity against two human cancer cell lines. Ir-NBs had an average size of 303.3 ± 91.7 nm with a bubble concentration of 9.28 × 1010 particles/mL immediately following production. We found that the initial Ir feeding concentration had a negligible effect on the NB size, but affected the bubble concentration as well as the acoustic performance of the NBs. Through a combination of sonication and Ir-NBs treatment, an increase of 68.8% and 69.6% cytotoxicity in human ovarian cancer cells (OVCAR-3) and human breast cancer cells (MCF-7), respectively, was observed compared to the application of Ir-NBs alone. Furthermore, Ir-NBs exposed to the US also induced the highest levels of intracellular ROS generation compared to free Ir and free Ir with empty NBs. The combination of these results suggests that the differences in treatment efficacy is a direct result of acoustic cavitation. These results provide evidence that US activated Ir-loaded NBs have the potential to become an effective sonosensitizer for SDT.


Iridium , Ovarian Neoplasms , Apoptosis , Cell Line, Tumor , Female , Fluorocarbons , Humans , Iridium/pharmacology , Ovarian Neoplasms/therapy , Reactive Oxygen Species/metabolism
8.
ACS Appl Mater Interfaces ; 12(27): 30181-30188, 2020 Jul 08.
Article En | MEDLINE | ID: mdl-32551524

In recent times, biomolecular sensing to recognize genetic fragments and proteins is spurring unprecedented interest as a diagnostic protocol for cancer and infectious diseases. Significant efforts have been made to design nanomaterials able to control the light-matter interaction at the single nanometer scale, where genes and proteins bind specifically to receptors. Here, we numerically show how the interface between a chiral metasurface and hyperbolic metamaterials can enable both high sensitivity and specificity for low-molecular-weight nucleic acids and proteins. As we have recently reported, hyperbolic dispersion metamaterials allow molecular biorecognition with extreme sensitivity because of coupled and highly confined plasmon polaritons. Specificity is almost exclusively achieved by receptor-ligand interaction at the in-plane sensing surface. Interestingly, an adapted out-of-plane chiral metasurface enables three key functionalities of the hyperbolic metamaterial sensor. Computational effort reveals that helicoidal metasurfaces can act as (i) efficient diffractive elements to excite surface and bulk plasmon polaritons; (ii) out-of-plane sensing branches to reduce the diffusion limit and increase the sensing surface; and (iii) biorecognition assay also via circular dichroism and chiral selectivity.


Biosensing Techniques/methods , Nanostructures/chemistry , Circular Dichroism , Stereoisomerism
9.
J Inorg Biochem ; 206: 111024, 2020 05.
Article En | MEDLINE | ID: mdl-32070915

The focus of this work is pointing out the different behavior of two structurally related Pt(II) complexes, the anionic cyclometalated NBu4[(Bzq)Pt(Thio)], 1 and the neutral [(Phen)Pt(Thio)], 2, (Bzq = benzo[h]quinoline, Phen = 1,10-phenantroline, Thio = 1,2-benzenedithiolate), on the interaction with human serum albumin (HSA), a key drug-delivery protein in the bloodstream. Being very limited the number of anionic Pt(II) complexes reported to date, this is a pioneering example of report on a protein-ligand interaction involving a negatively charged platinum compound. The study was carried out by using fluorescence spectroscopy, differential scanning calorimetry and molecular docking simulations. The results revealed a strong binding affinity between the anionic compound and the protein, whereas a weak/moderate binding interaction was highlighted for the neutral one. Comparative studies with site specific ligands (warfarin and ibuprofen), allowed us to identify the protein binding sites of the two compounds. The work aims to shed light on the relevance of the charge in designing new drugs with a favorable binding affinity for HSA, which strongly contributes to influence their pharmacological and toxicological profile.


Organoplatinum Compounds/chemistry , Organoplatinum Compounds/metabolism , Serum Albumin, Human/metabolism , Binding Sites , Calorimetry, Differential Scanning , Humans , Kinetics , Ligands , Molecular Docking Simulation , Protein Binding , Spectrometry, Fluorescence
10.
Nanoscale Adv ; 1(7): 2690-2698, 2019 Jul 10.
Article En | MEDLINE | ID: mdl-36132721

In this contribution experimental evidence of plasmonic edge modes and acoustic breathing modes in gold nanostars (AuNSs) is reported. AuNSs are synthesized by a surfactant-free, one-step wet-chemistry method. Optical extinction measurements of AuNSs confirm the presence of localized surface plasmon resonances (LSPRs), while electron energy-loss spectroscopy (EELS) using a scanning transmission electron microscope (STEM) shows the spatial distribution of LSPRs and reveals the presence of acoustic breathing modes. Plasmonic hot-spots generated at the pinnacle of the sharp spikes, due to the optically active dipolar edge mode, allow significant intensity enhancement of local fields and hot-electron injection, and are thus useful for size detection of small protein molecules. The breathing modes observed away from the apices of the nanostars are identified as stimulated dark modes - they have an acoustic nature - and likely originate from the confinement of the surface plasmon by the geometrical boundaries of a nanostructure. The presence of both types of modes is verified by numerical simulations. Both these modes offer the possibility of designing nanoplasmonic antennas based on AuNSs, which can provide information on both mass and polarizability of biomolecules using a two-step molecular detection process.

11.
Micromachines (Basel) ; 9(12)2018 Dec 16.
Article En | MEDLINE | ID: mdl-30558364

We report the study of heterodimeric plasmonic nanogaps created between gold nanostar (AuNS) tips and gold nanospheres. The selective binding is realized by properly functionalizing the two nanostructures; in particular, the hot electrons injected at the nanostar tips trigger a regio-specific chemical link with the functionalized nanospheres. AuNSs were synthesized in a simple, one-step, surfactant-free, high-yield wet-chemistry method. The high aspect ratio of the sharp nanostar tip collects and concentrates intense electromagnetic fields in ultrasmall surfaces with small curvature radius. The extremities of these surface tips become plasmonic hot spots, allowing significant intensity enhancement of local fields and hot-electron injection. Electron energy-loss spectroscopy (EELS) was performed to spatially map local plasmonic modes of the nanostar. The presence of different kinds of modes at different position of these nanostars makes them one of the most efficient, unique, and smart plasmonic antennas. These modes are harnessed to mediate the formation of heterodimers (nanostar-nanosphere) through hot-electron-induced chemical modification of the tip. For an AuNS-nanosphere heterodimeric gap, the intensity enhancement factor in the hot-spot region was determined to be 106, which is an order of magnitude greater than the single nanostar tip. The intense local electric field within the nanogap results in ultra-high sensitivity for the presence of bioanalytes captured in that region. In case of a single BSA molecule (66.5 KDa), the sensitivity was evaluated to be about 1940 nm/RIU for a single AuNS, but was 5800 nm/RIU for the AuNS-nanosphere heterodimer. This indicates that this heterodimeric nanostructure can be used as an ultrasensitive plasmonic biosensor to detect single protein molecules or nucleic acid fragments of lower molecular weight with high specificity.

12.
Dalton Trans ; 47(33): 11645-11657, 2018 Aug 21.
Article En | MEDLINE | ID: mdl-30095835

Novel anionic cyclometalated Pt(ii) square-planar complexes NBu4[(C^N)PtII(S^S)], containing 2-phenylpyridine H(PhPy), 2-(2,4-difluorophenyl)-pyridine H(F2PhPy) and benzo[h]quinoline H(Bzq), respectively, as a cyclometalated ligand and the dianionic 1,2-benzenedithiolate (Thio)2- fragment as an (S^S) ligand, were synthesised. By the simple addition of an equivalent of (Thio)2- to the NBu4[(C^N)PtII(Thio)] complexes, octahedral anionic NBu4[(C^N)PtIV(Thio)2] analogues were obtained, representing, to the best of our knowledge, the first examples of Pt(iv) anionic cyclometalated complexes. The molecular structures of the obtained complexes in the case of the NBu4[(Bzq)PtII(Thio)] and the NBu4[(Bzq)PtIV(Thio)2] complexes were confirmed by single crystal X-ray diffraction analysis. Furthermore, the electrochemical and photophysical properties of the two series of Pt(ii) and Pt(iv) newly synthesised complexes were studied and DFT and TD-DFT calculations were performed in order to comprehensively investigate the displayed behaviour. All Pt(ii) and Pt(iv) complexes show intense luminescence in the solid state, with remarkable enhancement of the emission quantum yields, proving to be excellent examples of aggregation-induced emission systems.

13.
Nanoscale ; 9(48): 19279-19289, 2017 Dec 14.
Article En | MEDLINE | ID: mdl-29189851

A nanoplatform for simultaneous cellular imaging, and photodynamic and photothermal therapies has been designed and realized by embedding a purposely synthesized highly luminescent water soluble iridium(iii) compound into gold core-silica shell nanoparticles. These multifunctionalities arise mainly from the photophysical properties of the cyclometalated complex: (i) the heavy atom promotes, through excited triplet state formation, energy transfer processes towards molecular oxygen, with the generation of 1O2 (photodynamic effect); (ii) the overlap of the iridium(iii) complex emission band with the plasmonic resonance of gold nanostructures allows excitation energy transfer towards the metallic core (photothermal effect); (iii) the remarkable iridium(iii) complex luminescence feature, which is preserved despite energy transfer processes, makes the whole system an efficient luminescent bio-probe (imaging). Photophysical and photothermal investigations have been carried out, whereas in vitro photo-cytotoxicity tests have been performed on human glioblastoma cells (U87MG), highlighting significant cancer cell death at a very low photosensitizer concentration (<0.5 µM), by means of a synergistic photodynamic and photothermal effect.


Iridium , Metal Nanoparticles , Photochemotherapy , Photosensitizing Agents , Phototherapy , Cell Line, Tumor , Glioblastoma , Gold , Humans , Luminescence , Microscopy, Confocal
14.
Dalton Trans ; 46(37): 12625-12635, 2017 Sep 26.
Article En | MEDLINE | ID: mdl-28906514

Two series of novel NBu4+ salts of anionic cyclometallated Pt(ii) complexes were synthesized and fully characterized. These highly luminescent compounds (NBu4[(C^N)Pt(O^N)] and NBu4[(C^N)Pt(O^O)]) are incorporated as testing examples of cyclometallating ligands 2-phenylpyridine (PhPy), 2-(2,4-difluorophenyl)-pyridine (F2PhPy) and 2-thienylpyridine (ThPy), and a benzo[h]quinoline (Bzq) fragment. All complexes display a square-planar coordination sphere, wherein the "(C^N)Pt" fragment is completed either by an O^N orotate (Ort) or an O^O tetrabromocatecholate (Cat) ligand. The HOMO and LUMO levels of all complexes were estimated by cyclic voltammetry and a comprehensive electrochemical and photophysical study was performed. The new complexes are emissive in solution at 298 K and the NBu4[(ThPy)Pt(Ort)] complex displays good photosensitizing properties (Φ = 28% in deaerated solution vs. Φ = 1.4% in the presence of O2). Both series of NBu4[(C^N)Pt(Ort)] and NBu4[(C^N)Pt(Cat)] complexes are highly luminescent in the solid state (emission quantum yields from 10 to 85%). Remarkably, the square-planar Pt(ii) anionic complexes showed an important increase in luminescence quantum yields on changing from the dilute solution to the solid state (the most significant from 0.13% to 85% for the NBu4[(PhPy)Pt(Ort)] complex, an ideal candidate as an active species for LEECs).

15.
Dalton Trans ; 45(43): 17264-17273, 2016 Nov 01.
Article En | MEDLINE | ID: mdl-27722340

The synthesis and photophysical characterization of a new family of luminescent water-soluble ionic iridium(iii) complexes of the general formula [(ppy)2Ir(bpy)]X are reported. The Ir(iii) complexes incorporate a cyclometalated 2-phenylpyridine (ppy), the ancillary ligand 2,2'-bipyridyl (bpy) and different counterions (X- = EtO-, OH-, EtOCH2CO2-, MeOCH2CO2-). These complexes were obtained starting from the cyclometalated Ir(iii) chloro-bridged dimer [(ppy)2Ir(µ-Cl)]2, for the first time synthesized through a new microwave assisted synthetic procedure, and subsequently converted into the corresponding hydroxy-bridged dimer [(ppy)2Ir(µ-OH)]2. The latter was eventually used as a sole reagent for the synthesis of all the reported complexes by simply varying the nature of the reaction solvent from water to alcohols and glycol ethers. This study demonstrates the versatility of the [(ppy)2Ir(µ-OH)]2 complex as a precursor to water soluble ionic Ir(iii) complexes. Indeed, [(ppy)2Ir(µ-OH)]2 has shown its peculiar chemical reactivity due to both a strong base character and an unexpected oxidative ability towards the alcoholic function of glycol ethers. All the synthesized complexes exhibit, in water solution, an orange emission centred at 606 nm. Moreover, all complexes display the ability to give rise to gel phases in water upon increasing their concentration, and the photophysical study evidenced the various interactions governing the gelification process. The water-solubility of these new luminescent Ir(iii) complexes makes them potentially useful in bio-related systems.

16.
J Photochem Photobiol B ; 140: 396-404, 2014 Nov.
Article En | MEDLINE | ID: mdl-25317968

A new combination of luminescent ionic transition-metal complexes (M = Ru(II) or Ir(III)) with gold silica-based nanoparticles (GSNPs) gives a promising nanomaterial for application in biomedical fields. Herein we report the synthesis and the photophysical properties of Ru(II) and Ir(III) complexes doped gold core-polysiloxane shell particles prepared by microemulsion method and characterized by Transmission Electron Microscopy, Dynamic Light Scattering and UV-Vis spectroscopy. The cytotoxicity and photodynamic activity of the obtained 50 nm-diameter nanoparticles were evaluated in vitro, providing noteworthy results. Furthermore, their intrinsic phosphorescence allows the localization of the photosensitizing nanoparticles into the cytosol of tumor cells by fluorescence confocal microscope. These valuable features designate them as multifunctional nanoplatforms for theranostic purposes.


Iridium/chemistry , Molecular Imaging/methods , Nanoparticles/chemistry , Organometallic Compounds/therapeutic use , Ruthenium/chemistry , Silicon Dioxide/chemistry , Animals , Cell Line, Tumor , Gold , Mice , Organometallic Compounds/chemistry , Particle Size
17.
Dalton Trans ; 41(36): 10923-5, 2012 Aug 28.
Article En | MEDLINE | ID: mdl-22885987

The grafting of a 2-picolylamine Pt(II) complex into polymethacrylic acid has been successfully performed. The obtained polymer is water soluble, and it represents the first example of a platinum-containing polymer able to photogenerate singlet oxygen.


Coordination Complexes/chemistry , Oxygen/chemistry , Photosensitizing Agents/chemistry , Platinum/chemistry , Polymethacrylic Acids/chemistry , Light , Singlet Oxygen/chemistry , Solubility , Water/chemistry
...